

ELIZADE UNIVERSITY, ILARA-MOKIN, **ONDO STATE**

FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SECOND SEMESTER EXAMINATION, 2018/2019 ACADEMIC SESSION

COURSE TITLE:

ENGINEERING MATHEMATICS IV

COURSE CODE:

GNE 316

EXAMINATION DATE:

9thJuly, 2019

COURSE LECTURER(S): Prof. Momoh-Jimoh Salami,

Dr. Akinwumi A. Amusan

D's SIGNATURE

TIME ALLOWED:

3 hours

INSTRUCTIONS:

- 1. ANSWER ANY FIVE QUESTIONS
- 2. ANY INCIDENT OF MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM SHALL BE SEVERELY PUNISHED.
- 3. YOU ARE NOT ALLOWED TO BORROW CALCULATORS AND ANY OTHER WRITING MATERIALS DURING THE EXAMINATION.
- 4. ELECTRONIC DEVICES CAPABLE OF STORING AND RETRIEVING INFORMATION ARE PROHIBITED.
- 5. DO NOT TURN TO YOUR EXAMINATION QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO.

Ouestion #1 (12 Marks)

A periodic function, with period 2π , is described as

$$f(x) = \begin{cases} \pi^2, & -\pi < x < 0; \\ (x - \pi)^2, & 0 < x < \pi. \end{cases}$$

- (a) Sketch a graph of f(x) for $-3\pi \le x \le 3\pi$. (2)
- (b) Compute its Fourier series expansion. (6)
- (c) From the result obtained in (b), show that

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 (2)

(ii)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$$
 (2)

Question #2 [12 Marks]

Consider a periodic function that is described by

$$f(x) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2}; \\ \pi - x, & \frac{\pi}{2} \le x \le \pi. \end{cases}$$

- (a) Sketch the graph of f(x) for $= -2\pi < x < 2\pi$ for the two cases where:
 - (i) f(x) is an even function. (3)
 - (ii) f(x) is an odd function. (3)
- (b) Determine the Fourier series expansion for the case a(i). (4)
- (c) From the result obtained in (b), show that (2)

$$\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}.$$

Question #3 (12 Marks)

(a) A periodic function, with period 10, is defined as
$$f(x) = \begin{cases} 0, & -5 < x < 0; \\ 3, & 0 < x < 5. \end{cases}$$

- (i) Sketch a graph of f(x). (2)
- (ii) Determine its Fourier series expansion. (4)
- (b) Given vectors $\vec{A} = pi 6j 3k$; $\vec{B} = 4i + 3j k$; and $\vec{C} = i 3j + 2k$; determine
 - (i) the value of p for which vectors \overrightarrow{A} and \overrightarrow{B} are perpendicular (1)
 - (ii) the value of p for which vectors $\overrightarrow{A}, \overrightarrow{B}$ and \overrightarrow{C} are coplanar (2)

(c) Determine whether or not the following vector field is conservative. Determine the corresponding scalar field φ if conservative.

$$\vec{F} = i(2xy + z) + j(x^2 + 2yz) + k(x + y^2)$$
 (3)

Question #4 (12 Marks)

Given that

$$\Gamma(y) = \int\limits_0^\infty t^{y-1} \, e^{-t} \, dt = (y-1)!$$
 Evaluate (i)
$$\int\limits_0^\infty \sqrt{x} \, e^{-\sqrt{x}} \, dx$$
 (ii)
$$\int\limits_0^\infty x^6 \, e^{-2x} \, dx$$
 (iii)
$$\int\limits_0^1 (\ln x)^4 \, dx$$

(a) Suppose m and n are positive constants, show that

$$\int_{0}^{\infty} x^{m} e^{-ax^{n}} dx = \frac{1}{na^{\left(\frac{m+1}{n}\right)}} \Gamma\left(\frac{m+1}{n}\right)$$

(6)

Question #5 [12 Marks]

Given that

$$B(m,n) = \int_{0}^{1} y^{m-1} (1-y)^{n-1} dy = 2 \int_{0}^{\frac{\pi}{2}} \sin^{2m-1} \theta \cos^{2n-1} \theta d\theta$$

(a) Evaluate

(i)

(4)

$$\int_{0}^{2} (4-x^2)^{3/2} \, dx$$

(ii)

$$\int_{0}^{\frac{\pi}{2}} \cos^{5}\theta \sin^{2}\theta d\theta$$

(b) Given that

$$\int_{0}^{\infty} \frac{x^{p-1}}{1+x} dx = \frac{\pi}{\sin p\pi},$$

Show that

$$\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi}$$

Hence, evaluate

(3)

(3)

$$\int_{0}^{2} x(8-x^3)^{\frac{1}{3}} dx$$

(c) Show that

(2)

$$\int_{a}^{b} e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \{ erfc(a) - erfc(b) \}$$

ouestion #6 (12Marks)

(a) Given that

Show that

$$x^2y'' + xy' + y = 0$$

$$x^{2}y^{(n+2)} + (2n+1)xy^{(n+1)} + (n^{2}+1)y^{(n)} = 0$$
(2)

(b) Use the Leibnitz-Maclaurin method to determine the series solution for the equation (5)

$$(1+x^2)y'' + xy' - 9y = 0$$

(c) Use the Frobenius method to obtain the series solution to the differential equation $3x^2y'' - xy' + y - xy = 0$ (5)

Question #7 (12 Marks)

(a) Given that vector $\overrightarrow{A} = i(x^2y) + j(xy + yz) + k(xz^2)$; and $\overrightarrow{B} = i(yz) - j(3xz) + k(2xy)$, determine at point (1,2,1)

$$(i) \quad \overrightarrow{\nabla}.\overrightarrow{B} \tag{1}$$

(ii)
$$\overrightarrow{\nabla} \times \overrightarrow{B}$$
 (2)

(iii)
$$\vec{\nabla}(\vec{\nabla}.\vec{A})$$
 (2)

(iv)
$$\vec{\nabla} \cdot (\vec{\nabla} \times (\vec{A} \times \vec{B}))$$

(b) Apply Green's theorem to evaluate the integral

$$\oint_c \left[(x-y)dx - (y^2 + xy)dy \right]$$

where c is the circle with unit radius, centered on the origin. (Note: $x = rcos\theta$, $y = rsin\theta$, $dxdy = rdrd\theta$)

(c) By the use of the divergence theorem, determine

$$\oint_{S} \vec{F} \cdot \vec{dS}$$

where, $\vec{F} = i(x) + j(xy) + k(2)$, taken over the region bounded by plane z = 0, z = 4, x = 0, y = 0 and the surface $x^2 + y^2 = 9$ in the first octant. (3) (Note: $x = \rho cos \phi$ $y = \rho sin \phi$, z = z, $dV = dx dy dz = \rho d\rho d\phi dz$)